A mathematical analysis of multiple-target SELEX.
نویسندگان
چکیده
SELEX (Systematic Evolution of Ligands by Exponential Enrichment) is a procedure by which a mixture of nucleic acids can be fractionated with the goal of identifying those with specific biochemical activities. One combines the mixture with a specific target molecule and then separates the target-NA complex from the resulting reactions. The target-NA complex is separated from the unbound NA by mechanical means (such as by filtration), the NA is eluted from the complex, amplified by PCR (polymerase chain reaction), and the process repeated. After several rounds, one should be left with the nucleic acids that best bind to the target. The problem was first formulated mathematically in Irvine et al. (J. Mol. Biol. 222:739-761, 1991). In Levine and Nilsen-Hamilton (Comput. Biol. Chem. 31:11-25, 2007), a mathematical analysis of the process was given. In Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998), multiple target SELEX was considered. It was assumed that each target has a single nucleic acid binding site that permits occupation by no more than one nucleic acid. Here, we revisit Vant-Hull et al. (J. Mol. Biol. 278:579-597, 1998) using the same assumptions. The iteration scheme is shown to be convergent and a simplified algorithm is given. Our interest here is in the behavior of the multiple target SELEX process as a discrete "time" dynamical system. Our goal is to characterize the limiting states and their dependence on the initial distribution of nucleic acid and target fraction components. (In multiple target SELEX, we vary the target component fractions, but not their concentrations, as fixed and the initial pool of nucleic acids as a variable starting condition). Given N nucleic acids and a target consisting of M subtarget component species, there is an M × N matrix of affinities, the (i,j) entry corresponding to the affinity of the jth nucleic acid for the ith subtarget. We give a structure condition on this matrix that is equivalent to the following statement: For any initial pool of nucleic acids such that all N species are represented, the dynamical system defined by the multiple target SELEX process will converge to a unique subset of nucleic acids, each of whose concentrations depend only upon the total nucleic acid concentration, the initial fractional target distribution (both of which are assumed to be the same from round to round), and the overall limiting association constant. (The overall association constant is the equilibrium constant for the system of MN reactions when viewed as a composite single reaction). This condition is equivalent to the statement that every member of a certain family of chemical potentials at infinite target dilution can have at most one critical point. (The condition replaces the statement for single target SELEX that the dynamical system generated via the process always converges to a pool that contains only the nucleic acid that binds best to the target). This suggests that the effectiveness of multiple target SELEX as a separation procedure may not be as useful as single target SELEX unless the thermodynamic properties of these chemical potentials are well understood.
منابع مشابه
Discrete Dynamical Systems in Multiple Target and Alternate SELEX
Dynamical systems are often used to model biochemical and biological processes. In Seo et al. (2010, 2014) we studied two mathematical models of the iterative biochemical procedure known as SELEX (Systematic Evolution of Ligands by EXponential Enrichment): multiple target SELEX and alternate SELEX. It is the purpose of this paper to revisit the mathematics of these processes in the language of ...
متن کاملA mathematical analysis of SELEX
Systematic evolution of ligands by exponential enrichment (SELEX) is a procedure by which a mixture of nucleic acids that vary in sequence can be separated into pure components with the goal of isolating those with specific biochemical activities. The basic idea is to combine the mixture with a specific target molecule and then separate the target-NA complex from the resulting reaction. The tar...
متن کاملTarget replacement strategy for selection of DNA aptamers against the Fc region of mouse IgG.
Aptamers that recognize the IgG Fc region are of great interest because of their wide application as an immunology probing tool, for diagnostics, and as affinity agents for antibody purification. We developed a target replacement strategy as a modification of conventional Systematic Evolution of Ligands by EXponential enrichment (SELEX) in order to efficiently select and identify novel DNA apta...
متن کاملAptaCluster - A Method to Cluster HT-SELEX Aptamer Pools and Lessons from Its Application
Systematic Evolution of Ligands by EXponential Enrichment (SELEX) is a well established experimental procedure to identify aptamers - synthetic single-stranded (ribo)nucleic molecules that bind to a given molecular target. Recently, new sequencing technologies have revolutionized the SELEX protocol by allowing for deep sequencing of the selection pools after each cycle. The emergence of High Th...
متن کاملNew Strategies for Evaluation and Analysis of SELEX Experiments
Aptamers are an interesting alternative to antibodies in pharmaceutics and biosensorics, because they are able to bind to a multitude of possible target molecules with high affinity. Therefore the process of finding such aptamers, which is commonly a SELEX screening process, becomes crucial. The standard SELEX procedure schedules the validation of certain found aptamers via binding experiments,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bulletin of mathematical biology
دوره 72 7 شماره
صفحات -
تاریخ انتشار 2010